Serveur d'exploration sur le nickel au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions

Identifieur interne : 000444 ( Main/Exploration ); précédent : 000443; suivant : 000445

Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions

Auteurs : Frieder Klein [Allemagne] ; Wolfgang Bach [Allemagne]

Source :

RBID : ISTEX:F97A415FEAB79FB0B24DE8825DDBEBCD1E8C538F

Abstract

Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O. We have compiled and evaluated thermodynamic data for Fe–Ni–Co–O–S phases and computed phase relations in fO2,g–fS2,g and aH2,aq–aH2S,aq diagrams for temperatures between 150 and 400°C at 50 MPa. We use the relations and compositions of Fe–Ni–Co–O–S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20′N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite–magnetite–pentlandite and heazlewoodite–magnetite–pentlandite assemblages forming in the early stages of serpentinization to millerite–pyrite–polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that high-sulfur-fugacity sulfides, such as polydymite and pyrite–vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g–fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe–Ni–Co–O–S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration. The co-occurrence of pentlandite–awaruite–magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.

Url:
DOI: 10.1093/petrology/egn071


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions</title>
<author>
<name sortKey="Klein, Frieder" sort="Klein, Frieder" uniqKey="Klein F" first="Frieder" last="Klein">Frieder Klein</name>
</author>
<author>
<name sortKey="Bach, Wolfgang" sort="Bach, Wolfgang" uniqKey="Bach W" first="Wolfgang" last="Bach">Wolfgang Bach</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F97A415FEAB79FB0B24DE8825DDBEBCD1E8C538F</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1093/petrology/egn071</idno>
<idno type="url">https://api.istex.fr/document/F97A415FEAB79FB0B24DE8825DDBEBCD1E8C538F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000915</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000915</idno>
<idno type="wicri:Area/Istex/Curation">000567</idno>
<idno type="wicri:Area/Istex/Checkpoint">000148</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000148</idno>
<idno type="wicri:doubleKey">0022-3530:2009:Klein F:fe:ni:co</idno>
<idno type="wicri:Area/Main/Merge">000458</idno>
<idno type="wicri:Area/Main/Curation">000444</idno>
<idno type="wicri:Area/Main/Exploration">000444</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions</title>
<author>
<name sortKey="Klein, Frieder" sort="Klein, Frieder" uniqKey="Klein F" first="Frieder" last="Klein">Frieder Klein</name>
<affiliation wicri:level="3">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Geoscience Department, University of Bremen, Klagenfurter Straße, 28359 Bremen</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Brême (Land)</region>
<settlement type="city">Brême</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bach, Wolfgang" sort="Bach, Wolfgang" uniqKey="Bach W" first="Wolfgang" last="Bach">Wolfgang Bach</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Allemagne</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Petrology</title>
<idno type="ISSN">0022-3530</idno>
<idno type="eISSN">1460-2415</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published" when="2009-01">2009-01</date>
<biblScope unit="volume">50</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="37">37</biblScope>
<biblScope unit="page" to="59">59</biblScope>
</imprint>
<idno type="ISSN">0022-3530</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-3530</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Serpentinization of abyssal peridotites is known to produce extremely reducing conditions as a result of dihydrogen (H2,aq) release upon oxidation of ferrous iron in primary phases to ferric iron in secondary minerals by H2O. We have compiled and evaluated thermodynamic data for Fe–Ni–Co–O–S phases and computed phase relations in fO2,g–fS2,g and aH2,aq–aH2S,aq diagrams for temperatures between 150 and 400°C at 50 MPa. We use the relations and compositions of Fe–Ni–Co–O–S phases to trace changes in oxygen and sulfur fugacities during progressive serpentinization and steatitization of peridotites from the Mid-Atlantic Ridge in the 15°20′N Fracture Zone area (Ocean Drilling Program Leg 209). Petrographic observations suggest a systematic change from awaruite–magnetite–pentlandite and heazlewoodite–magnetite–pentlandite assemblages forming in the early stages of serpentinization to millerite–pyrite–polydymite-dominated assemblages in steatized rocks. Awaruite is observed in all brucite-bearing partly serpentinized rocks. Apparently, buffering of silica activities to low values by the presence of brucite facilitates the formation of large amounts of hydrogen, which leads to the formation of awaruite. Associated with the prominent desulfurization of pentlandite, sulfide is removed from the rock during the initial stage of serpentinization. In contrast, steatitization indicates increased silica activities and that high-sulfur-fugacity sulfides, such as polydymite and pyrite–vaesite solid solution, form as the reducing capacity of the peridotite is exhausted and H2 activities drop. Under these conditions, sulfides will not desulfurize but precipitate and the sulfur content of the rock increases. The co-evolution of fO2,g–fS2,g in the system follows an isopotential of H2S,aq, indicating that H2S in vent fluids is buffered. In contrast, H2 in vent fluids is not buffered by Fe–Ni–Co–O–S phases, which merely monitor the evolution of H2 activities in the fluids in the course of progressive rock alteration. The co-occurrence of pentlandite–awaruite–magnetite indicates H2,aq activities in the interacting fluids near the stability limit of water. The presence of a hydrogen gas phase would add to the catalyzing capacity of awaruite and would facilitate the abiotic formation of organic compounds.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Brême (Land)</li>
</region>
<settlement>
<li>Brême</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Brême (Land)">
<name sortKey="Klein, Frieder" sort="Klein, Frieder" uniqKey="Klein F" first="Frieder" last="Klein">Frieder Klein</name>
</region>
<name sortKey="Bach, Wolfgang" sort="Bach, Wolfgang" uniqKey="Bach W" first="Wolfgang" last="Bach">Wolfgang Bach</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NickelMaghrebV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000444 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000444 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NickelMaghrebV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F97A415FEAB79FB0B24DE8825DDBEBCD1E8C538F
   |texte=   Fe–Ni–Co–O–S Phase Relations in Peridotite–Seawater Interactions
}}

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Fri Mar 24 23:14:20 2017. Site generation: Tue Mar 5 17:03:47 2024